

Solarcon Solar Concentrator Applied to Electric Propulsion

SRS Technologies
Huntsville Alabama

Naval Research Laboratory Washington, DC

Advanced Space Propulsion Workshop Huntsville, Alabama

April 2001

mbrown@space.nrl.navy.mil

How Solarcon Overcomes the Problems that Short-Circuit Electric Propulsion

Problem #1

- Power Requirements for Orbit Transfer by Electric Propulsion May Be Significantly Above the Power Requirements for the Spacecraft Once It Reaches Its Station
 - The Additional Cost and Weight of Solar Arrays Is an Argument Against Electric Propulsion

Solution

Solarcon Can Double Array Power With Negligible Change in Weight and Cost

Problem #2

 Spacecraft Builders Have Rejected Previous Concentrators for Several Reasons: Risk, Net Efficiency, Novelty

Solution

- Solarcon's Channel Configuration Generate Power When Stowed or If the Spacecraft Tumbles
- Solarcon Doubles Specific Power of a Given Photovoltaic Array
- Solarcon Uses Existing Solar Array Panels and Deployment Mechanisms –
 Stows in ½ the Volume of a Plane Array of Same Power

Channel Configuration Concentrator Definition

Geometric Concentration Ratio = A/S

- The Channel Concentrator Is the Only Configuration That Provides Power in the Stowed Configuration and If the Spacecraft Tumbles
- The Channel Configuration Uses Two Flat Reflectors to Focus Sunlight onto the Photovoltaic Array
- Practical Limit of Geometric Concentration Ratio (GCR) Is » 2.5:1 in Channel Design
- The Reflectors Must Be Optically Flat Since Uneven Sunlight on a String of Cells Degrades Power Output

NRL's "Solarcon" Channel Concentrator Innovations

Innovation #1: Thin Film Reflectors With Catenary-Like Edges

NRL Channel Concentrator Innovations

Innovation #2: Stow Reflectors Rolled-Up, Either Side of Solar Panel Stack

Mid-Deployment

Stowed

Benefits

- Full Solar Panel Exposed in Stowed Position
- Since L>S, Maximum GCR of 2.5:1 Can Be Achieved
- Has Appearance of Conventional Solar Panels, Stows With ½ the Volume

Innovation #3: Solarcon Retrofit Kit

 Purpose: Allow Spacecraft Builders to Make Their Own Panels, Panel Deployment Mechanisms. . .

Solarcon Doubles Specific Power of an Unaugmented Solar Array

1. Unaugmented Array

Cell: 21.7% at 70° C

Large Array: 71.5 w/kg (Tecstar)

Power: 1369 w/m² * .217 * .9 =262.4 w/m²

Mass: 262.4 w/m² = 3.66 kg

71.5 w/kg m²

2. Solarcon

2.5 m

R=.98

90% Packing

Factor

Cell: 19.3% at 120° C

I: $1369 \text{w/m}^2 * (1 + 1.5 * .98) = 3381.4 \text{ w/m}^2$

1_m

Power = 3381.4 w/m² * .193 * .9 =587.4 w/m²

3. Allowable Reflector System Mass for 100% Increase in Specific Power

$$\frac{587.6 \text{ w/m}^2}{2 * 71.5 \text{ w/kg}} = 4.167 \text{ kg/m}^2 \text{ Goal}$$

- 4.167 kg/m² 3.66 kg/m² (Unaugmented) = .44 kg Reflector System

 1 m² Solar Panel
- 4m² Reflectors/1m² Solar Panel *0.0176 kg/m² Reflector = 0.0704 kg Reflector 1 m² Solar Panel
- Balance for Booms, Deployment Mechanisms = .44 kg .07 kg = .37 kg/m² Panel

010402PS_SolarconEP.7

Solarcon Off-Pointing Efficiency

* Aspect Ratio Is Array Length Divided by Width

- Alpha Variation Shown for Beta = 0 Degrees
- Does Not Defocus With B Variation
- Maximum Theoretical Sunlight Fraction May Be Reduced by Uneven Distribution of Light on Cell Strings
- Assumes 100% Reflectivity (Actual Is ~95%-98%)
- Provide 13% of Full Power When Tumbling About Axis

Micrometeorites Induce Only Minor Reflector Damage

- Evaluation Performed on Flightlike Reflector Panels
 - Loaded to Operating Stresses (30 psi Then, ~ 3 psi Now)
 - Metallized 0.5 Mil Clear Polyimide (CP1) and Kapton Foils
- Bombarded With Aluminum Spheres
 - 16 Mil and 125 Mil Diameter at 6.8 Km/Sec
 - Normal Incidence Angle
- Exposure Created "Clean" Holes in Reflector No Ripping or Other Propagated Damage Observed
- Negligible Electrical Output Degradation Since Damage Is localized
- Knife Cut in Stressed Reflector Did Not Propagate

Thin Film Reflector Will Operate in Space Environment

- Atomic Oxygen
 - No Issue in Benign GEO Environment
 - SiO2 Coating Provides Foil Protection in LEO
- Ultraviolet Radiation
 - Metallized Clear Polyimide (CP1) Film Preferred to Kapton
 - Negligible CP1 Degradation Expected Due to Brittleness and/or Darkening
- Environmental Characterization Efforts Continuing
 - Aerospace Corp. UV Measurements Complete 12/97
 - NASA to Initiate Activity Supporting the Next Generation Space Telescope (Thin Film Sunshade)

Solarcon Operating Temperatures

^{*} Tecstar (Cell Manufacturer) States That This Temperature Is Acceptable for Long Term Operation

Solarcon Reflector Material Development

- The Reflector Material Is CP1, Manufactured by SRS of Huntsville, Alabama
- CP1 Is a Fluorinated Polyimide With Exceptional UV Resistance, Thermal Stability, Transparency, and Solubility
- CP1 Was Developed by NASA/Langly and SRS Holds the Sole License to Produce This Material
- CP1 Is Easily Soluble
 - It Can Be Cast on Many Different Surfaces With Varying Thickness Down to 0.1 mil
 - It Produces Films That Are Optically Flat With Isotropic Material Properties and Exhibits no Residual Stress
- 220C Maximum Operating Temperature
- Life Predictions
 - Successful Aerospace Corporation Accelerated Life Test for 5 Years in LEO Followed by 5 Years at GEO
 - Qualified by GSFC for Use on Hubble
 - Accepted by Hughes for Extended Life at GEO
- SRS and Langly Are Developing Techniques to Cast the Reflective Silver With the Polyimide So Reflectivity Cannot Be Decreased by Physical or Chemical Contact

Solarcon Example: Building Space Power Generator at Geo With Electric Propulsion

Solarcon 900 KW Array Field in Launch Vehicle

Solarcon 900 KW Array Field Propelling Itself to Geo

Example: Transporting Solar Array Field to Geo Case 1

- All Chemical Propulsion
- 300 N mi Circular at 28.7° to 19,323 N mi Circular at 0° DV=13,641 ft/sec

900 KW Array Field	10,000#
OTV (Guidance, Comms)	300
Propulsion System	2778
Propellant (H ₂ O ₂)	20988
Total to LEO	34,066#*
Today's Technology Total to LEO:	42,087#

*Predicted Future Technology

Example: Transporting Solar Array Field to Geo Case 2

- Chemical Propulsion 300 N mi to 4,000 N mi Circular at 28.7° DV= 7,029 ft/sec
- Electrical Propulsion to 19,323 N mi Circular at 0° DV= 13,323 ft/sec (40 Days)

9701

Chemical Propellant

010402PS_SolarconEP.

Example: Transporting Solar Array Field to Geo Case 3

Electrical Propulsion 300 N mi Circular at 28.7° to 19,323 N mi Circular at 0° DV= 19,136 ft/sec (62 Days)

Impact of Array Efficiency Loss in Passing Through Van Allan Belts

- 150 KW Arrays (Deployed for Electric Propulsion)
 Degrade to 133 kw (89%)
- Loss of 17 kw Is Equivalent to 17,000w / 240 w/kg = 71 Kg Mass of Additional (Protected) Array Required to Make up Loss